
Chapter 14

Search Trees

Concepts:
. BinarySearchTrees
. Tree Sort
. Splay Trees
. Red-Black Trees

He looked to the right of him.
No caps.

He looked to the left of him.
No caps.

...
Then he looked up into the tree.
And what do you think he saw?

—Esphyr Slobodkina

STRUCTURES ARE OFTEN THE SUBJECT OF A SEARCH. We have seen, for example,
that binary search is a natural and efficient algorithm for finding values within
ordered, randomly accessible structures. Recall that at each point the algorithm
compares the value sought with the value in the middle of the structure. If they
are not equal, the algorithm performs a similar, possibly recursive search on one
side or the other. The pivotal feature of the algorithm, of course, was that the
underlying structure was in order. The result was that a value could be effi-
ciently found in approximately logarithmic time. Unfortunately, the modifying
operations—add and remove—had complexities that were determined by the
linear nature of the vector.

Heaps have shown us that by relaxing our notions of order we can improve
on the linear complexities of adding and removing values. These logarithmic
operations, however, do not preserve the order of elements in any obviously
useful manner. Still, if we were somehow able to totally order the elements of
a binary tree, then an algorithm like binary search might naturally be imposed
on this branching structure.

14.1 Binary Search Trees

The binary search tree is a binary tree whose elements are kept in order. This is
easily stated as a recursive definition.

Definition 14.1 A binary tree is a binary search tree if it is trivial, or if every
node is simultaneously greater than or equal to each value in its left subtree, and
less than or equal to each value in its right subtree.

To see that this is a significant restriction on the structure of a binary tree,
one need only note that if a maximum of n distinct values is found at the root,

344 Search Trees

(a) (b) (c) (d) (e)

2

3 3

1

2

3 3

1

2

1

1

3

1

2 2

Figure 14.1 Binary search trees with three nodes.

all other values must be found in the left subtree. Figure 14.1 demonstrates
the many trees that can contain even three distinct values. Thus, if one is not
too picky about the value one wants to have at the root of the tree, there are
still a significant number of trees from which to choose. This is important if
we want to have our modifying operations run quickly: ideally we should be as
nonrestrictive about the outcome as possible, in order to reduce the friction of
the operation.

One important thing to watch for is that even though our definition allows
duplicate values of the root node to fall on either side, our code will prefer to
have them on the left. This preference is arbitrary. If we assume that values
equal to the root will be found in the left subtree, but in actuality some are
located in the right, then we might expect inconsistent behavior from methods
that search for these values. In fact, this is not the case.

To guide access to the elements of a binary search tree, we will consider it an
implementation of an OrderedStructure, supporting the following methods:

Binary-

SearchTree

public class BinarySearchTree<E extends Comparable<E>>

extends AbstractStructure<E> implements OrderedStructure<E>

{

public BinarySearchTree()

// post: constructs an empty binary search tree

public BinarySearchTree(Comparator<E> alternateOrder)

// post: constructs an empty binary search tree

public boolean isEmpty()

// post: returns true iff the binary search tree is empty

public void clear()

// post: removes all elements from binary search tree

public int size()

// post: returns the number of elements in binary search tree

public void add(E value)

14.2 Example: Tree Sort 345

// post: adds a value to binary search tree

public boolean contains(E value)

// post: returns true iff val is a value found within the tree

public E get(E value)

// post: returns object found in tree, or null

public E remove(E value)

// post: removes one instance of val, if found

public Iterator<E> iterator()

// post: returns iterator to traverse BST

}

Unlike the BinaryTree, the BinarySearchTree provides only one iterator

method. This method provides for an in-order traversal of the tree, which, with
some thought, allows access to each of the elements in order. Maybe even

with no
thought!

14.2 Example: Tree Sort

Because the BinarySearchTree is an OrderedStructure it provides the natural
basis for sorting. The algorithm of Section 11.2.3 will work equally well here,
provided the allocation of the OrderedStructure is modified to construct a
BinarySearchTree. The binary search structure, however, potentially provides
significant improvements in performance. If the tree can be kept reasonably
short, the cost of inserting each element is O(log n). Since n elements are ulti-
mately added to the structure, the total cost is O(n log n).1 As we have seen in
Chapter 12, all the elements of the underlying binary tree can be visited in lin-
ear time. The resulting algorithm has a potential for O(n log n) time complexity,
which rivals the performance of sorting techniques using heaps. The advantage
of binary search trees is that the elements need not be removed to determine
their order. To attain this performance, though, we must keep the tree as short
as possible. This will require considerable attention.

14.3 Example: Associative Structures

Associative structures play an important role in making algorithms efficient. In
these data structures, values are associated with keys. Typically (though not
necessarily), the keys are unique and aid in the retrieval of more complete
information—the value. In a Vector, for example, we use integers as indices
to find values. In an AssociativeVector we can use any type of object. The

1 This needs to be proved! See Problem 14.11.

346 Search Trees

SymbolTable associated with the PostScript lab (Section 10.5) is, essentially,
an associative structure.

Associative structures are an important feature of many symbol-based sys-
tems. Here, for example, is a first approach to the construction of a general-
purpose symbol table, with potentially logarithmic performance:

SymTab

import structure5.*;

import java.util.Iterator;

import java.util.Scanner;

public class SymTab<S extends Comparable<S>,T>

{

protected BinarySearchTree<ComparableAssociation<S,T>> table;

public SymTab()

// post: constructs empty symbol table

{

table = new BinarySearchTree<ComparableAssociation<S,T>>();

}

public boolean contains(S symbol)

// pre: symbol is non-null string

// post: returns true iff string in table

{

ComparableAssociation<S,T> a =

new ComparableAssociation<S,T>(symbol,null);

return table.contains(a);

}

public void add(S symbol, T value)

// pre: symbol non-null

// post: adds/replaces symbol-value pair in table

{

ComparableAssociation<S,T> a =

new ComparableAssociation<S,T>(symbol,value);

if (table.contains(a)) table.remove(a);

table.add(a);

}

public T get(S symbol)

// pre: symbol non null

// post: returns token associated with symbol

{

ComparableAssociation<S,T> a =

new ComparableAssociation<S,T>(symbol,null);

if (table.contains(a)) {

a = table.get(a);

return a.getValue();

} else {

return null;

}

}

14.3 Example: Associative Structures 347

public T remove(S symbol)

// pre: symbol non null

// post: removes value associated with symbol and returns it

// if error returns null

{

ComparableAssociation<S,T> a =

new ComparableAssociation<S,T>(symbol,null);

if (table.contains(a)) {

a = table.remove(a);

return a.getValue();

} else {

return null;

}

}

}

Based on such a table, we might have a program that reads in a number of alias-
name pairs terminated by the word END. After that point, the program prints out
the fully translated aliases:

public static void main(String args[])

{

SymTab<String,String> table = new SymTab<String,String>();

Scanner s = new Scanner(System.in);

String alias, name;

// read in the alias-name database

do

{

alias = s.next();

if (!alias.equals("END"))

{

name = s.next();

table.add(alias,name);

}

} while (!alias.equals("END"));

// enter the alias translation stage

do

{

name = s.next();

while (table.contains(name))

{

// translate alias

name = table.get(name);

}

System.out.println(name);

} while (s.hasNext());

}

Given the input:

348 Search Trees

three 3

one unity

unity 1

pi three

END

one

two

three

pi

the program generates the following output:

1

two

3

3

We will consider general associative structures in Chapter 15, when we dis-
cuss Dictionaries. We now consider the details of actually supporting the
BinarySearchTree structure.

14.4 Implementation

In considering the implementation of a BinarySearchTree, it is important to
remember that we are implementing an OrderedStructure. The methods of
the OrderedStructure accept and return values that are to be compared with
one another. By default, we assume that the data are Comparable and that the
natural order suggested by the NaturalComparator is sufficient. If alternative
orders are necessary, or an ordering is to be enforced on elements that do not
directly implement a compareTo method, alternative Comparators may be used.
Essentially the only methods that we depend upon are the compatibility of the
Comparator and the elements of the tree.

We begin by noticing that a BinarySearchTree is little more than a binary
tree with an imposed order. We maintain a reference to a BinaryTree and
explicitly keep track of its size. The constructor need only initialize these two
fields and suggest an ordering of the elements to implement a state consistent
with an empty binary search tree:

BinarySearch-

Tree

protected BinaryTree<E> root;

protected final BinaryTree<E> EMPTY = new BinaryTree<E>();

protected int count;

protected Comparator<E> ordering;

public BinarySearchTree()

14.4 Implementation 349

// post: constructs an empty binary search tree

{

this(new NaturalComparator<E>());

}

public BinarySearchTree(Comparator<E> alternateOrder)

// post: constructs an empty binary search tree

{

root = EMPTY;

count = 0;

ordering = alternateOrder;

}

As with most implementations of OrderedStructures, we develop a method
to find the correct location to insert the value and then use that method as the
basis for implementing the public methods—add, contains, and remove. Our
approach to the method locate is to have it return a reference to the location
that identifies the correct point of insertion for the new value. This method, of
course, makes heavy use of the ordering. Here is the Java code for the method:

protected BinaryTree<E> locate(BinaryTree<E> root, E value)

// pre: root and value are non-null

// post: returned: 1 - existing tree node with the desired value, or

// 2 - the node to which value should be added

{

E rootValue = root.value();

BinaryTree<E> child;

// found at root: done

if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than

if (ordering.compare(rootValue,value) < 0)

{

child = root.right();

} else {

child = root.left();

}

// no child there: not in tree, return this node,

// else keep searching

if (child.isEmpty()) {

return root;

} else {

return locate(child, value);

}

}

The approach of the locate method parallels binary search. Comparisons are
made with the root, which serves as a median value. If the value does not
match, then the search is refocused on either the left side of the tree (among
smaller values) or the right side of the tree (among larger values). In either

350 Search Trees

case, if the search is about to step off the tree, the current node is returned: if
the value were added, it would be a child of the current node.

Once the locate method is written, the contains method must check to see
if the node returned by locate actually equals the desired value:2

public boolean contains(E value)

// post: returns true iff val is a value found within the tree

{

if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());

}

It now becomes a fairly straightforward task to add a value. We simply
locate the value in the tree using the locate function. If the value was not
found, locate returned a node off of which a leaf with the desired value may
be added. If, however, locate has found an equivalent value, we must insert
the new value as the right child of the predecessor of the node returned by
locate.3

public void add(E value)

// post: adds a value to binary search tree

{

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);

// add value to binary search tree

// if there's no root, create value at root

if (root.isEmpty())

{

root = newNode;

} else {

BinaryTree<E> insertLocation = locate(root,value);

E nodeValue = insertLocation.value();

// The location returned is the successor or predecessor

// of the to-be-inserted value

if (ordering.compare(nodeValue,value) < 0) {

insertLocation.setRight(newNode);

} else {

if (!insertLocation.left().isEmpty()) {

// if value is in tree, we insert just before

predecessor(insertLocation).setRight(newNode);

} else {

2 We reemphasize at this point the importance of making sure that the equals method for an object
is consistent with the ordering suggested by the compare method of the particular Comparator.
3 With a little thought, it is clear to see that this is a correct location. If there are two copies of a
value in a tree, the second value added is a descendant and predecessor (in an in-order traversal)
of the located value. It is also easy to see that a predecessor has no right child, and that if one is
added, it becomes the predecessor.

14.4 Implementation 351

insertLocation.setLeft(newNode);

}

}

}

count++;

}

Our add code makes use of the protected “helper” function, predecessor, which
returns a pointer to the node that immediately precedes the indicated root:

protected BinaryTree<E> predecessor(BinaryTree<E> root)

{

Assert.pre(!root.isEmpty(), "No predecessor to middle value.");

Assert.pre(!root.left().isEmpty(), "Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty()) {

result = result.right();

}

return result;

}

A similar routine can be written for successor, and would be used if we preferred
to store duplicate values in the right subtree.

We now approach the problem of removing a value from a binary search
tree. Observe that if it is found, it might be an internal node. The worst case
occurs when the root of a tree is involved, so let us consider that problem.

There are several cases. First (Figure 14.2a), if the root of a tree has no
left child, the right subtree can be used as the resulting tree. Likewise (Fig-
ure 14.2b), if there is no right child, we simply return the left. A third case
(Figure 14.2c) occurs when the left subtree has no right child. Then, the right
subtree—a tree with values no smaller than the left root—is made the right sub-
tree of the left. The left root is returned as the result. The opposite circumstance
could also be true.

We are, then, left to consider trees with a left subtree that, in turn, contains
a right subtree (Figure 14.3). Our approach to solving this case is to seek out
the predecessor of the root and make it the new root. Note that even though the
predecessor does not have a right subtree, it may have a left. This subtree can
take the place of the predecessor as the right subtree of a nonroot node. (Note
that this is the result that we would expect if we had recursively performed our
node-removing process on the subtree rooted at the predecessor.)

Finally, here is the Java code that removes the top BinaryTree of a tree and
returns the root of the resulting tree:

protected BinaryTree<E> removeTop(BinaryTree<E> topNode)

// pre: topNode contains the value we want to remove

// post: we return an binary tree rooted with the predecessor of topnode.

{

// remove topmost BinaryTree from a binary search tree

352 Search Trees

(a)

A

B

A

B

(c)

(b)

x x

x

Figure 14.2 The three simple cases of removing a root value from a tree.

3

2

1

2

1

3x

predecessor()x

Figure 14.3 Removing the root of a tree with a rightmost left descendant.

14.4 Implementation 353

BinaryTree<E> left = topNode.left();

BinaryTree<E> right = topNode.right();

// disconnect top node

topNode.setLeft(EMPTY);

topNode.setRight(EMPTY);

// Case a, no left BinaryTree

// easy: right subtree is new tree

if (left.isEmpty()) { return right; }

// Case b, no right BinaryTree

// easy: left subtree is new tree

if (right.isEmpty()) { return left; }

// Case c, left node has no right subtree

// easy: make right subtree of left

BinaryTree<E> predecessor = left.right();

if (predecessor.isEmpty())

{

left.setRight(right);

return left;

}

// General case, slide down left tree

// harder: successor of root becomes new root

// parent always points to parent of predecessor

BinaryTree<E> parent = left;

while (!predecessor.right().isEmpty())

{

parent = predecessor;

predecessor = predecessor.right();

}

// Assert: predecessor is predecessor of root

parent.setRight(predecessor.left());

predecessor.setLeft(left);

predecessor.setRight(right);

return predecessor;

}

With the combined efforts of the removeTop and locate methods, we can now
simply locate a value in the search tree and, if found, remove it from the tree.
We must be careful to update the appropriate references to rehook the modified
subtree back into the overall structure.

Notice that inserting and removing elements in this manner ensures that the
in-order traversal of the underlying tree delivers the values stored in the nodes
in a manner that respects the necessary ordering. We use this, then, as our
preferred iteration method.

public Iterator<E> iterator()

// post: returns iterator to traverse BST

{

return root.inorderIterator();

}

354 Search Trees

The remaining methods (size, etc.) are implemented in a now-familiar manner.

Exercise 14.1 One possible approach to keeping duplicate values in a binary search
tree is to keep a list of the values in a single node. In such an implementation,
each element of the list must appear externally as a separate node. Modify the
BinarySearchTree implementation to make use of these lists of duplicate values.

Each of the time-consuming operations of a BinarySearchTree has a worst-
case time complexity that is proportional to the height of the tree. It is easy to
see that checking for or adding a leaf, or removing a root, involves some of the
most time-consuming operations. Thus, for logarithmic behavior, we must be
sure that the tree remains as short as possible.

Unfortunately, we have no such assurance. In particular, one may observe
what happens when values are inserted in descending order: the tree is heavily
skewed to the left. If the same values are inserted in ascending order, the tree
can be skewed to the right. If these values are distinct, the tree becomes, essen-
tially, a singly linked list. Because of this behavior, we are usually better off if
we shuffle the values beforehand. This causes the tree to become, on average,
shorter and more balanced, and causes the expected insertion time to become
O(log n).

Considering that the tree is responsible for maintaining an order among data
values, it seems unreasonable to spend time shuffling values before ordering
them. In Section 14.5 we find out that the process of adding and removing a
node can be modified to maintain the tree in a relatively balanced state, with
only a little overhead.

14.5 Splay Trees

Because the process of adding a new value to a binary search tree is determin-
istic—it produces the same result tree each time—and because inspection of the
tree does not modify its structure, one is stuck with the performance of any
degenerate tree constructed. What might work better would be to allow the
tree to reconfigure itself when operations appear to be inefficient.Splay: to spread

outward. The splay tree quickly overcomes poor performance by rearranging the tree’s
nodes on the fly using a simple operation called a splay. Instead of perform-
ing careful analysis and optimally modifying the structure whenever a node is
added or removed, the splay tree simply moves the referenced node to the top
of the tree. The operation has the interesting characteristic that the average
depth of the ancestors of the node to be splayed is approximately halved. As
with skew heaps, the performance of a splay tree’s operators, when amortized
over many operations, is logarithmic.

The basis for the splay operation is a pair of operations called rotations (see
Figure 14.4). Each of these rotations replaces the root of a subtree with one of
its children. A right rotation takes a left child, x, of a node y and reverses their
relationship. This induces certain obvious changes in connectivity of subtrees,

14.5 Splay Trees 355

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4 The relation between rotated subtrees.

but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.

The code for rotating a binary tree about a node is a method of the Binary-

Tree class. We show, here, rotateRight; a similar method performs a left Finally, a right
handed
method!

BinaryTree-

Node

rotation.

protected void rotateRight()

// pre: this node has a left subtree

// post: rotates local portion of tree so left child is root

{

BinaryTree<E> parent = parent();

BinaryTree<E> newRoot = left();

boolean wasChild = parent != null;

boolean wasLeftChild = isLeftChild();

// hook in new root (sets newRoot's parent, as well)

setLeft(newRoot.right());

// puts pivot below it (sets this's parent, as well)

newRoot.setRight(this);

if (wasChild) {

if (wasLeftChild) parent.setLeft(newRoot);

else parent.setRight(newRoot);

}

}

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

14.6 Splay Tree Implementation 357

nodes is halved, they clearly occupy locations closer to the top of the tree where
they may be more efficiently accessed.

To guarantee that the splay has an effect on all operations, we simply per-
form each of the binary search tree operations as before, but we splay the tree
at the node accessed or modified during the operation. In the case of remove,
we splay the tree at the parent of the value removed.

14.6 Splay Tree Implementation

Because the splay tree supports the binary search tree interface, we extend the
BinarySearchTree data structure. Methods written for the SplayTree hide or
override existing code inherited from the BinarySearchTree. SplayTree

public class SplayTree<E extends Comparable<E>>

extends BinarySearchTree<E> implements OrderedStructure<E>

{

public SplayTree()

// post: construct a new splay tree

public SplayTree(Comparator<E> alternateOrder)

// post: construct a new splay tree

public void add(E val)

// post: adds a value to the binary search tree

public boolean contains(E val)

// post: returns true iff val is a value found within the tree

public E get(E val)

// post: returns object found in tree, or null

public E remove(E val)

// post: removes one instance of val, if found

protected void splay(BinaryTree<E> splayedNode)

public Iterator<E> iterator()

// post: returns iterator that traverses tree nodes in order

}

As an example of how the splay operation is incorporated into the existing
binary tree code, we look at the contains method. Here, the root is reset to the
value of the node to be splayed, and the splay operation is performed on the
tree. The postcondition of the splay operation guarantees that the splayed node
will become the root of the tree, so the entire operation leaves the tree in the
correct state.

358 Search Trees

public boolean contains(E val)

// post: returns true iff val is a value found within the tree

{

if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,val);

if (val.equals(possibleLocation.value())) {

splay(root = possibleLocation);

return true;

} else {

return false;

}

}

One difficulty with the splay operation is that it potentially modifies the
structure of the tree. For example, the contains method—a method normally
considered nondestructive—potentially changes the underlying topology of the
tree. This makes it difficult to construct iterators that traverse the SplayTree

since the user may use the value found from the iterator in a read-only opera-
tion that inadvertently modifies the structure of the splay tree. This can have
disastrous effects on the state of the iterator. A way around this difficulty isIt can also

wreck your day. to have the iterator keep only that state information that is necessary to help
reconstruct—with help from the structure of the tree—the complete state of our
traditional nonsplay iterator. In the case of the SplayTreeIterator, we keep
track of two references: a reference to an “example” node of the tree and a
reference to the current node inspected by the iterator. The example node helps
recompute the root whenever the iterator is reset. To determine what nodes
would have been stored in the stack in the traditional iterator—the stack of un-
visited ancestors of the current node—we consider each node on the (unique)
path from the root to the current node. Any node whose left child is also on
the path is an element of our “virtual stack.” In addition, the top of the stack
maintains the current node (see Figure 14.6).

The constructor sets the appropriate underlying references and resets the it-
erator into its initial state. Because the SplayTree is dynamically restructuring,
the root value passed to the constructor may not always be the root of the tree.
Still, one can easily find the root of the current tree, given a node: follow parent
pointers until one is null. Since the first value visited in an inorder traversal
is the leftmost descendant, the reset method travels down the leftmost branch
(logically pushing values on the stack) until it finds a node with no left child.

SplayTree-

Iterator

protected BinaryTree<E> tree; // node of splay tree, root computed

protected final BinaryTree<E> LEAF;

protected BinaryTree<E> current; // current node

// In this iterator, the "stack" normally used is implied by

// looking back up the path from the current node. Those nodes

// for which the path goes left are on the stack

public SplayTreeIterator(BinaryTree<E> root, BinaryTree<E> leaf)

// pre: root is the root of the tree to be traversed

14.6 Splay Tree Implementation 359

Virtual Stack

root

current

Figure 14.6 A splay tree iterator, the tree it references, and the contents of the virtual
stack driving the iterator.

// post: constructs a new iterator to traverse splay tree

{

tree = root;

LEAF = leaf;

reset();

}

public void reset()

// post: resets iterator to smallest node in tree

{

current = tree;

if (!current.isEmpty()) {

current = current.root();

while (!current.left().isEmpty()) current = current.left();

}

}

The current node points to, by definition, an unvisited node that is, logically,
on the top of the outstanding node stack. Therefore, the hasNext and get
methods may access the current value immediately.

public boolean hasNext()

// post: returns true if there are unvisited nodes

{

return !current.isEmpty();

}

public E get()

// pre: hasNext()

// post: returns current value

360 Search Trees

{

return current.value();

}

All that remains is to move the iterator from one state to the next. The next

method first checks to see if the current (just visited) element has a right child.
If so, current is set to the leftmost descendant of the right child, effectively
popping off the current node and pushing on all the nodes physically linking
the current node and its successor. When no right descendant exists, the sub-
tree rooted at the current node has been completely visited. The next node to
be visited is the node under the top element of the virtual stack—the closest
ancestor whose left child is also an ancestor of the current node. Here is how
we accomplish this in Java:

public E next()

// pre: hasNext()

// post: returns current element and increments iterator

{

E result = current.value();

if (!current.right().isEmpty()) {

current = current.right();

while (!current.left().isEmpty())

{

current = current.left();

}

} else {

// we're finished with current's subtree. We now pop off

// nodes until we come to the parent of a leftchild ancestor

// of current

boolean lefty;

do

{

lefty = current.isLeftChild();

current = current.parent();

} while (current != null && !lefty);

if (current == null) current = new BinaryTree<E>();

}

return result;

}

The iterator is now able to maintain its position through splay operations.
Again, the behavior of the splay tree is logarithmic when amortized over a

number of operations. Any particular operation may take more time to execute,
but the time is usefully spent rearranging nodes in a way that tends to make the
tree shorter.

From a practical standpoint, the overhead of splaying the tree on every oper-
ation may be hard to justify if the operations performed on the tree are relatively
random. On the other hand, if the access patterns tend to generate degenerate
binary search trees, the splay tree can improve performance.

14.7 An Alternative: Red-Black Trees 361

14.7 An Alternative: Red-Black Trees

A potential issue with both traditional binary search trees and splay trees is
the fact that they potentially have bad performance if values are inserted or
accessed in a particular order. Splay trees, of course, work hard to make sure
that repeated accesses (which seem likely) will be efficient. Still, there is no
absolute performance guarantee.

One could, of course, make sure that the values in a tree are stored in as
perfectly balanced a manner as possible. In general, however, such techniques
are both difficult to implement and costly in terms of per-operation execution
time.

Exercise 14.2 Describe a strategy for keeping a binary search tree as short as
possible. One example might be to unload all of the values and to reinsert them in
a particular order. How long does your approach take to add a value?

Because we consider the performance of structures using big-O notation, we
implicitly suggest we might be happy with performance that is within a constant
of optimal. For example, we might be happy if we could keep a tree balanced
within a factor of 2. One approach is to develop a structure called a red-black
tree.

For accounting purposes only, the nodes of a red-black tree are imagined to
be colored red or black. Along with these colors are several simple rules that
are constantly enforced:

1. Every red node has two black children.

2. Every leaf has two black (EMPTY is considered black) children.

3. Every path from a node to a descendent leaf contains the same number of
black nodes.

The result of constructing trees with these rules is that the height of the tree
measured along two different paths cannot differ by more than a factor of 2:
two red nodes may not appear contiguously, and every path must have the
same number of black nodes. This would imply that the height of the tree is
O(log2 n).

Exercise 14.3 Prove that the height of the tree with n nodes is no worse than
O(log2 n).

Of course, the purpose of data abstraction is to be able to maintain the con-
sistency of the structure—in this case, the red-black tree rules—as the structure
is probed and modified. The methods add and remove are careful to maintain
the red-black structure through at most O(log n) rotations and re-colorings of
nodes. For example, if a node that is colored black is removed from the tree, it
is necessary to perform rotations that either convert a red node on the path to
the root to black, or reduce the black height (the number of black nodes from

362 Search Trees

root to leaf) of the entire tree. Similar problems can occur when we attempt to
add a new node that must be colored black.

The code for red-black trees can be found online as RedBlackTree. While
the code is too tedious to present here, it is quite elegant and leads to binary
search trees with very good performance characteristics.

The implementation of the RedBlackTree structure in the structure pack-
age demonstrates another approach to packaging a binary search tree that is
important to discuss. Like the BinaryTree structure, the RedBlackTree is de-
fined as a recursive structure represented by a single node. The RedBlackTree

also contains a dummy-node representation of the EMPTY tree. This is useful in
reducing the complexity of the tests within the code, and it supports the notion
that leaves have children with color, but most importantly, it allows the user to
call static methods that are defined even for red-black trees with no nodes.
This approach—coding inherently recursive structures as recursive classes—
leads to side-effect free code. Each method has an effect on the tree at hand
but does not modify any global structures. This means that the user must be
very careful to record any side effects that might occur. In particular, it is im-
portant that methods that cause modifications to the structure return the “new”
value of the tree. If, for example, the root of the tree was the object of a remove,
that reference is no longer useful in maintaining contact with the tree.

To compare the approaches of the BinarySearchTree wrapper and the re-
cursive RedBlackTree, we present here the implementation of the SymTab struc-
ture we investigated at the beginning of the chapter, but cast in terms of Red-
BlackTrees. Comparison of the approaches is instructive (important differences
are highlighted with uppercase comments).

RBSymTab

import structure5.*;

import java.util.Iterator;

public class RBSymTab<S extends Comparable<S>,T>

{

protected RedBlackTree<ComparableAssociation<S,T>> table;

public RBSymTab()

// post: constructs empty symbol table

{

table = new RedBlackTree<ComparableAssociation<S,T>>();

}

public boolean contains(S symbol)

// pre: symbol is non-null string

// post: returns true iff string in table

{

return table.contains(new ComparableAssociation<S,T>(symbol,null));

}

public void add(S symbol, T value)

// pre: symbol non-null

// post: adds/replaces symbol-value pair in table

14.8 Conclusions 363

{

ComparableAssociation<S,T> a = new ComparableAssociation<S,T>(symbol,value);

if (table.contains(a)) table = table.remove(a);

table = table.add(a);

}

public T get(S symbol)

// pre: symbol non-null

// post: returns token associated with symbol

{

ComparableAssociation<S,T> a = new ComparableAssociation<S,T>(symbol,null);

if (table.contains(a)) {

a = table.get(a);

return a.getValue();

} else {

return null;

}

}

public T remove(S symbol)

// pre: symbol non-null

// post: removes value associated with symbol and returns it

// if error returns null

{

ComparableAssociation<S,T> a = new ComparableAssociation<S,T>(symbol,null);

if (table.contains(a)) {

a = table.get(a);

table = table.remove(a);

return a.getValue();

} else {

return null;

}

}

}

The entire definition of RedBlackTrees is available in the structure package,
when O(log n) performance is desired. For more details about the structure,
please see the documentation within the code.

14.8 Conclusions

A binary search tree is the product of imposing an order on the nodes of a binary
tree. Each node encountered in the search for a value represents a point where
a decision can be accurately made to go left or right. If the tree is short and
fairly balanced, these decisions have the effect of eliminating a large portion of
the remaining candidate values.

The binary search tree is, however, a product of the history of the insertion
of values. Since every new value is placed at a leaf, the internal nodes are left

364 Search Trees

untouched and make the structure of the tree fairly static. The result is that
poor distributions of data can cause degenerate tree structures that adversely
impact the performance of the various search tree methods.

To combat the problem of unbalanced trees, various rotation-based opti-
mizations are possible. In splay trees, rotations are used to force a recently
accessed value and its ancestors closer to the root of the tree. The effect is often
to shorten degenerate trees, resulting in an amortized logarithmic behavior. A
remarkable feature of this implementation is that there is no space penalty: no
accounting information needs to be maintained in the nodes.

Self Check Problems

Solutions to these problems begin on page 449.

14.1 What motivates the use of binary search trees?

14.2 Suppose values have only been added into a BinarySearchTree. Where
is the first node added to the tree? Where is the last node added to the tree?

14.3 What is an associative structure?

14.4 Which node becomes the root after a tree is rotated left?

14.5 Is the right rotation the reverse of the left rotation?

14.6 If two values are equal (using equals) are they found near each other
in a BinarySearchTree?

14.7 Why is it so difficult to construct an Iterator for a SplayTree?

14.8 What is the primary advantage of a red-black tree over a splay tree?

14.8 Conclusions 365

Problems

Solutions to the odd-numbered problems begin on page 483.

14.1 What distinguishes a binary search tree from a binary tree?

14.2 Draw all three-node integer-valued trees whose nodes are visited in the
order 1-2-3 in an in-order traversal. Which trees are binary search trees?

14.3 Draw all three-node integer-valued trees whose nodes are visited in the
order 1-2-3 in a preorder traversal. Which trees are binary search trees?

14.4 Draw all three-node integer-valued trees whose nodes are visited in the
order 1-2-3 in a postorder traversal. Which trees are binary search trees?

14.5 Redraw the following binary search tree after the root has been re-
moved.

3

2 5

4 630

3 5

14.6 Redraw the tree shown in Problem 14.5 after the leaf labeled 3 is re-
moved.

14.7 Redraw the tree shown in Problem 14.5 after it is splayed at the leaf
labeled 3.

14.8 The locate methods from OrderedVectors and BinarySearchTrees
are very similar. They have, for example, similar best-case behaviors. Explain
why their behaviors differ in the worst case.

14.9 Prove that, if values are distinct, any binary search tree can be con-
structed by appropriately ordering insertion operations.

14.10 In splay trees rotations are performed, possibly reversing the parent-
child relationship between two equal values. It is now possible to have a root
node with a right child that is equal. Explain why this will not cause problems
with each of the current methods locate, add, and remove.

14.11 Describe the topology of a binary search tree after the values 1 through
n have been inserted in order. How long does the search tree take to construct?

14.12 Describe the topology of a splay tree after the values 1 through n have
been inserted in order. How long does the splay tree take to construct?

14.13 Because the remove method of binary search trees prefers to replace a
node with its predecessor, one expects that a large number of removes will cause
the tree to lean toward the right. Describe a scheme to avoid this problem.

14.14 Suppose n distinct values are stored in a binary tree. It is noted that the
tree is a min-heap and a binary search tree. What does the tree look like?

14.15 As we have seen, the splay tree requires the construction of an iterator
that stores a single reference to the tree, rather than an unlimited number of

366 Search Trees

references to ancestors. How does this reduction in space utilization impact the
running time of the iterator?

14.16 Write an equals method for binary search trees. It should return true

if both trees contain equal values.

14.17 Having answered Problem 14.16, is it possible to accurately use the
same method for splay trees?

14.18 Write a copy method for binary search trees. The result of the copy

should be equal to the original. Carefully argue the utility of your approach.

14.19 Prove that the expected time to perform the next method of the splay
tree iterator is constant time.

14.9 Laboratory: Improving the BinarySearchTree

Objective. To understand it is possible to improve an implementation.

Discussion. As we have seen in the implementation of the BinarySearchTree

class, the insertion of values is relative to the root of the tree. One of the
situations that must be handled carefully is the case where more than one node
can have the same key. If equal keys are allowed in the binary search tree, then
we must be careful to have them inserted on one side of the root. This behavior
increases the complexity of the code, and when there are many duplicate keys,
it is possible that the tree’s depth can be increased considerably.

Procedure. An alternative approach is to have all the nodes with similar keys
stored in the same location. When the tree is constructed in this manner, then
there is no need to worry about keeping similar keys together—they’re always
together.

In this lab, we will implement a BinaryMultiTree—a BinarySearchTree-
like structure that stores a multiset (a set of values with potential duplicates).
We are not so concerned with the set features, but we are demanding that dif-
ferent values are kept in sorted order in the structure. In particular, the traversal
of the BinaryMultiTree should return the values in order.

In this implementation, a BinaryTree is used to keep track of a List of val-
ues that are equal when compared with the compare method of the ordering

Comparator. From the perspective of the structure, there is no distinguishing
the members of the list. Externally, the interface to the BinaryMultiTree is
exactly the same as the BinarySearchTree, but the various methods work with
values stored in Lists, as opposed to working with the values directly. For ex-
ample, when we look at a value stored in a node, we find a List. A getFirst

of this List class picks out an example that is suitable, for example, for com-
parison purposes.

Here are some things to think about during your implementation:

1. The size method does not return the number of nodes; it returns the
number of values stored in all the nodes. The bookkeeping is much the
same as it was before, but size is an upper bound on the actual size of
the search tree.

2. The add method compares values to the heads of lists found at each node
along the way. A new node is created if the value is not found in the
tree; the value is inserted in a newly created List in the BinaryTreeNode.
When an equal key is found, the search for a location stops, and the value
is added to the List. A carefully considered locate method will help
considerably here.

3. The contains method is quite simple: it returns true if the getFirst of
any of the Lists produces a similar value.

368 Search Trees

4. The get method returns one of the matching values, if found. It should
probably be the same value that would be returned if a remove were exe-
cuted in the same situation.

5. The iterator method returns an Iterator that traverses all the values of
the BinarySearchTree. When a list of equal values is encountered, they
are all considered before a larger value is returned.

When you are finished, test your code by storing a large list of names of peo-
ple, ordered only by last name (you will note that this is a common tech-
nique used by stores that keep accounts: “Smith?” “Yes!” “Are you Paul or
John?”). You should be able to roughly sort the names by inserting them into a
BinaryMultiTree and then iterating across its elements.

Thought Questions. Consider the following questions as you complete the lab:

1. Recall: What is the problem with having equal keys stored on either side
of an equal-valued root?

2. Does it matter what type of List is used? What kinds of operations are to
be efficient in this List?

3. What is the essential difference between implementing the tree as de-
scribed and, say, just directly storing linked lists of equivalent nodes in the
BinarySearchTree?

4. An improved version of this structure might use a Comparator for primary
and secondary keys. The primary comparison is used to identify the cor-
rect location for the value in the BinaryMultiTree, and the secondary
key could be used to order the keys that appear equal using the primary
key. Those values that are equal using the primary key are kept within an
OrderedStructure that keeps track of its elements using the secondary
key Comparator.

Notes:

